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THREE-DIMENSIONAL ANALYSIS OF
SURFACE CRACK-HERTZIAN STRESS FIELD INTERACTION

R. Ballarini and Y. Hsu
Dept. of Civil Engineering
Case Western Reserve University

Cleveland Ohio

SUMMARY

This thesis presents the results of a stress intensity factor analysis of
semicircular surface cracks in the inner raceway of an engine bearing. The loading
consists of a moving spherical Hertzian contact load and an axial stress due to

rotation and shrink fit.

A three dimensional linear elastic Boundary Element Method code was
developed to perform the stress analysis. The element library includes linear and
quadratic isoparametric surface elements. Singular quarter point elements were
employed to capture the square root displacement variation and the inverse square
root stress singularity along the crack front. The program also possesses the
capability to separate the whole domain into two subregions. This procedure
enables one to solve non-symmetric fracture mechanics problems without having to

separate the crack surfaces a priori.

A wide range of configuration parameters was investigated. The ratio of
crack depth to bearing thickness was varied from one-sixtieth to one-fifth for

several different locations of the Hertzian load. The stress intensity factors for



several crack inclinations were also investigated.
The results demonstrate the efficiency and accuracy of the Boundary

Element Method. Moreover, the results can provide the basis for crack growth

calculations and fatigue life prediction.

vi



CHAPTER ONE
INTRODUCTION

Surface cracks commonly occur in machine and structural components. An
example of such a component is a rotating engine bearing subjected to rolling
contact. Under high speed rotation and cyclic contact loading, the surface crack
initiating at the raceway of the bearing might propagate and lead to catastrophic
failure. Raceway fracture is a totally unacceptable failure mechanism because it
may cause serious damage to engine operations and consequently produce
catastrophic engine failure. An accurate crack stress analysis of the surface-cracked
component is essential in order to make a reliable prediction of fatigue life.
However, due to the complexities of the nature of the surface crack problem,
mathematical closed form solutions are not possible, and a numerical analysis or an
experimental approach must be used to determine the stress intensity factors for
surface cracks under different types of loading. The Boundary Element Method is
an efficient and accurate tool for fracture mechanics analyses if singular elements
and multi-domain crack modeling are employed. This method is used in this

research.

Several factors will affect the growth of surface cracks in a rotational
bearing under rolling contact loads. These include the geomety and inclination of
the crack, the tensile hoop stress due to rotatdon and shrink fit, the moving Hertzian
load, the pressure of the lubricant seeping into the crack, the shear stress on the
raceway surface due to the sliding contact, and friction along the crack surfaces. A

significant amount of research has been conducted aimed at gaining a better



understanding of the effects of each of these factors. While the surface crack is a
three-dimensional problem, most of the analyses which appear in the literature are
two-dimensional. These include the work of Way [1], which considers the effect
of the lubricant, Fleming and Suh [2,3], which considers the effects of surface
friction, Rosenfield [4], which considers the effects of crack surface friction, and
Clark [3], which considers the effects of tensile hoop stresses. A recent paper by
Mendelson and Ghosn [6] presents the results ‘of fatigue life predictions of a
propagating surface crack subjected to tensile hoop stresses and cyclic Hertzian
contact loadings. Using a modified Forman-type crack propagation law they
predicted the fatigue life of a typical bearing and compared their results with
experimentally observed fatigue lives. Their predictions were conservative by a
factor of 12. However, they demonstrated that the crack driving force in such
problems is the alternating mixed-mode loading that occurs with each passage of the
roller. Based on these results, the present research was aimed at quandfying the
three-dimensional effects of the problem. Three dimensional analyses of surface
cracks as applied to contact fatigue were recently performed by Murakami [7].
However, in his analysis the tensile hoop stresses were ignored. The model
proposed in the present research neglects some of the factors mentioned previously.
It is assumed that lubrication renders surface sliding friction negligible. The
pressure on the crack surfaces which may arise from the lubricant seeping into the
crack is ignored since the Hertzian loading moves past the crack very fast, thus the
viscosity, compressibility, and inertia of the oil will prevent pressurization of the
crack surfaces [8]. Moreover, since the radius of the Hertzian contact area is
smaller than the surface length of the crack, the crack mouth will not be completely
covered and the oil is allowed to squeeze out of the crack. The friction between the

crack surfaces is neglected, since it tends to increase the resistance to crack growth.



This will lead to a conservative prediction of fatigue life.

Thus, the only factors assumed to be important in the present mode] are the
mechanical loads arising from the Hertzian contact, rotation, and shrink-fit. The

remaining five chapters of this paper are organized as follows:

In Chapter two the boundary integral equation is derived. The equation is
reduced to a system of algebraic equations, and a procedure is described which
treats the singularities which appear in the kernels. An algorithm for multi-domain

analyses is also presented.

Chapter three is a brief review of linear elastic fracture mechanics. The
formation of quarter point elements and traction singular elements as well as the
displacement correlation method for calculating the stress intensity factors are also
discussed. Several verification problems follow in Chapter four to elucidate the
accuracy and efficiency of the Boundary Element Method for solving three

dimensional linear elastic solid mechanics problems including crack stress analysis.

In Chapter five, the spherical Hertzian stress distribution and the hoop
tensile stress due to the rotation and shrink fit of the inner raceway of the engine
bearing are calculated. Results are presented for a wide range of configuration
parameters. These include several different locations of the Hertzian load, different
inclinations of the crack surface, several ratios of the crack depth to the raceway
thickness and different intensities of the Hertzian load. A large number of the stress

intensity factor versus these factors are presented.



The final chapter presents a discussion of the results and recommendations for

future research.



CHAPTER TWO
BOUNDARY ELEMENT METHOD

This chapter reviews the development of the Boundary Element Method and
presents a detailed derivation of the boundary integral equaton. The procedures of
numerical implementation and a multi-domain technique of the Boundary Element

Method are also illustrated.
2.1 Introduction

The boundary integral equation was first derived explicitly by Rizzo (91,
who reduced two dimensional isowopic elastostatics problems to an integral
equation by using the Betti-Somigliana formula. The equation was then discretized
into line segments along the boundary over which constant displacement and
rraction distributions are assumed to solve the elastic problem numerically.
Although much of the mathematical theory of Rizzo's formula can be maced to
Kupradze [10], and several papers about integral equation methods such as Jawson
[11] and Symm [12], his work presented a clear form of the integral equation
relating the boundary traction and displacement which is now commonly associated
with the term " Boundary Integral Equation”. Following Rizzo's work, Cruse [13]
extended the Boundary Element Method to three dimensional isowopic elastic
problems by using triangular elements with linear variations. The accuracy of the
Boundary Element Method was later improved by Lachat and Watson [14], and
Rizzo and Shippy [15] using higher order isopa.rametﬁc elements. The application
of the Boundary Element Method to fracture mechanics was carried out by Cruse

[13], [16] by modeling the crack as an open notch. The results obtained using this



approach tend to be inaccurate because as the cracks surfaces are moved close to
each other the system of equations becomes singular. This problem was remedied
by Blandford et al. [17], who used two subregions to model the crack. The
quarter-point technique developed for the Finite Element Method by Barsoum [18]

was adopted and modified by Cruse and Wilson [19] to capture the square root

singularity predicted by linear elastic fracture mechanics.

The Boundary Element Method developed in this paper utilizes four kinds
of isoparametric surface elements: a three-node linear triangular element, a four-
node linear quadrilateral element, a six-node quadratic triangular element, and eight-
node quadratic quadrilateral element. A library of Gaussian integration quadrature
is installed in a subroutine which can be used to accomplish the numerical
integration. The quarter point element and the traction singular element are used in
the program to represent the crack tip singularity. The multi-domain technique is

also applied to model the topology.

2.2 Derivation of Boundary Integral Equation

The mathematical fundations of the boundary integral equation are based on
the Kelvin solution and Betti's reciprocal theorem [20].
Let P and Q be two arbitrary points in an infinte elastic body as shown in

Fig 2.1. A unit concentrated load acting at point P in i direction is defined as



=]

Infinite elastic body

Figure 2.1 Domain and Boundary Geometry



fi P,Q=8(P,Q) ¢;

where e is the unit vector in i direction and 8(P,Q) is the Dirac delta function which
is defined as a function that is equal to zero for Q does not coincide with P and

becomes infinite when P=Q in such manner that

f 5(P,Q) dAQ = 1
Q

for any point P which lies in domain Q. The displacement in direction j at point Q
due to a unit concentrated load applied in direction i at point P in an infinte linear

elastc body is given by Kelvin's solution [21]

b =UyPQe @1
where

(P,Q=——L . _

YR Q 16mu(1-v)r [ (3-4v)3+rr, ] (2.2)

and ej is the component of the unit base vector in direction i, i is shear modulus, v



is Poisson's ratio, and r is the distance between point P and point Q. Note that
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where aij is the Kronecker delta which is equal to | wheni =jand O wheni=jand
comma i denotes partial differentiation with respect to direction x;. Cartesian tensor
notation is used hereinafter with all the subscripts ranging from 1 to 3 and the
convention that repeated indices are summed is employed. The stress-strain relation

for an isowopic linear elastic material is [22]

Cp =2ug; + XSjk €mn (2.5)



and the strain-displacement relation is

m
i

( uj’k + uk’j )

[T

ik

(2.6)

The stwress-displacement relationship for an isotropic elastic material are obtained by

substututing Eq.2.6 into Eq.2.5, i.e.

O = ).Sjkum.m +u( U+ “k-j)

where A = — YE i '
ere A eI and E is Young's Modulus

Substituting Eq.2.1 into Eq.2.7, the stress field can be obtained as

Di]k(P.Q) = 7‘5,'1: U om®Q + p( Uij,k(P,Q) + Uik,j(P,Q))

- -1 (1-2v)(r,.8ki +r,k5i. -r,i5.k) +3r,1,1,
87t(l—v)r2 { P : : : }

10

2.7

(2.8)



where Diji (P,Q) is interpreted as the stress component Oj at point Q due to a unit
load in the i direction at point P. If point Q is put on the boundary [ of a finite
body with domain Q cut out from the infinite body,as shown in Fig.2.1, the

tractions at point Q on the surface can be determined as

t; = Ol (2.9)

where ny is the kg, component of the outward normal to the surface at point Q.

Substtution of Eq.2.8 into Eq.2.9 leads to

T;®.Q = Dy (P.Qn (Q

=___1_{(1-2v)(n.r,.-n.r,.) - My T, [(1-2\:)5.. + "r,.r,.} 2.10
8x (1-v)r? I N G ij ’xx]( )

where Tij(P,Q) is the tracton at point Q in direction j on the surface with outward
normal ny due to a unit load in direction i at point P. The free body cut out from the
infinite body forms an equilibrium state subjected to the concentrated unit force
fj(P,Q) and the boundary tractions Tij(P,Q)ei with the corresponding boundary
displacement Uj;(P,Qe;. Betu's reciprocal theorem can now be applied to derive

the bouhdary integral equation. Suppose that there are two generalized force

11



systems. The first system includes body forces b;, surface tractions tj and
displacements uj , and the second one consists of body forces b;*, boundary
actions tj* and displacements uj*. If these two systems act simultaneously on a
linear elastic body with domain Q enveloped by the boundary surface I', Betti's

reciprocal theorem states that [23]

j ¢ utdl + J' bu*dQ = J'ti‘ wdl + j b*u.dQ 2.11)
) 1] J ] J )
Q T Q

That is, the work done by the forces of the first system with the displacements of
the second system is equal to the work performed by the forces of the second
system on the displacements produced by the first system. Now let the first system
be the one we are seeking a solution to with the assumption that the body forces are
neglected and let the second system correspond to the fundamental solutions for the

traction and displacement due to a unit concentrated load fj in an infinite body, as

shown in Fig.2.2. That is,
b, =0
t =tQ
B =u(Q
bj‘ =£=3P.Q¢,
cj‘ =T,P.Qe,
w=U.PQe (2.12)

12



prescribed

t.
J

() Q

k=

ke
=T;®Qe

(b)

Figure 2.2 Generalized Force Systems: (a) First System with Traction t j and
Displacement u j (b) Second System of Kelvin's Solution
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Substitution of Eq.2.12 into Eq.2.11, leads to the following equation

J U, @edr@ =[ 1,0 Qedr@ +[5e.0e @i
r r Q

(2.13)
Noting that
JS(P,wejuj(wdﬂ(w =u(P) e, =u(P)3; ¢ (2.14)
Q
and using Eq.2.14, Eq.2.13 can be rewritten as
J Uij(P,Q)tj(Q)dl‘(Q)ci=1:[Tij(P,Q)uj(Q)dI'(Q)ei + 80P, (2.15)

or

14



5,u® =| U,P.OYQIr(Q -[ T,P.QuQdr@Q (2.16)
r r

So far the point P is inside the boundary I'. In order to have the equation relate
only the points on the boundary surface I', we need to move the point P toward the
surface. However, due to the singular nature of the kemels Uj;(P,Q) and Tj;(P,Q)
as r tends to zero, a limiting process must be employed in order to obtain the

boundary integral equation. Let us first choose a new boundary

L=T+T

where I'g is a surface of semi-spheric shape and I'_ is the rest of the surface as
shown in Fig.2.3. T’ should envelop the point P such that P is still in domain Q2

and thus Eq.2.16 is sdll available. With the new boundary, Eq.2.16 now becomes

5,(P) = U, P.Q(QITQ +[U,@.QyQdr@
T.

T

,[ T;;(P.Qu,(Qdl(Q -JTij@,wuj(QdF Q 2.17)
L. r

15



As € tends to zero, the boundary I becomes the original boundary I". We also note

that when point Q is within the region I'c we have

dI(Q) = 2sind d8 do

T=¢
Li = 04
sinB cos ¢
n=4¢ sinBsin ¢
cos®
nr, =1

Linj-rjn=0

5(Q) =(P) and uj(Q) = uj(P) (2.18)

where tj(P) and uj(P) are the tractions and displacements at point P which are
constants over the surface of the sphere as € tends to be zero. Subsdmting these

relatons into Eq.2.17, the second term on the right hand side of Eq.2.17 becomes

J’U (P, Q)t (QAI(Q)

E

- J' (3 4v)5..+n.n.] £25in8d8der. (P)
T6n u(l RV O j

09
&L (P)
=) (3-4v)4..+n.n.|
16mu(1-v) j ﬂ y o J]Smeded¢ (2.19)
00

16
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Figure 2.3 Domain and Boundary Used for Limiting Process
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As £ = 0, the limit of the second integral on the right hand side of Eq. 2.17

becomes

lig [U,POHQI@ =0 (2.20)
r

The integral of Eq.2.19 is no longer singular and thus Eq.2.20 tends to be zero as €
is approaching zero. As for the fourth term on the right hand side of Eq. 2.17

0
jT..(P,Q)u.(Q)d.I‘( J' [(1-2v)3,, + 3n,n ]Je?sin@dBdou (P)
LA -v)e

[

871:(1.\,) Jﬂ(l 2V)5 +3nn, ] sinBdede  (2.21)

Substtuting Eq.2.18 into Eq.2.21 leads to a matrix expression for the kernel inside

the integraton and taking the limit as ¢ approaching zero

18



T,(P.Qu(Qds(Q)

C e i

0
1mJ.
E—0

0

(1- 2v)+3sin26coszq) sin?@sin¢cosd, sindcosbeosd || u, ®)
-u.
=3 ((IP)) JJ sin?0sindcosd, (1-2v)+3sin*Bsin?9, sinBcosh sind || u,(P) | sinbdBdo
n(l-v

00 schochosd) sinBcosBsing, (1-2v) + 3c0526_”_\13(P)_|

(2.22)

The integral ranges will depend on the local geometry of the point P. If point P lies

on a smooth surface,

and each term inside the matrix in Eq.2.22 becomes

L, 0, o |[u®
lim |T,e.QuQa@= 9 =0 || u® (2.23)
Ty 0, 0, :% u;(P)

19



or in Cartesian tensor form

lim f T,(P.Qu(Qr(Q = 2 L5, u(P) (2.24)
I‘

Substituting Eq.2.20 and Eq.2.24 into Eq.2.17 leads to the boundary integral

equaton for P lying on a smooth surface

38;3® = [U,P.QyQIQ - T,@.0u@dr© (2.25)
r

If P is not on a smooth surface, the boundary integral equation is

C,Eu® = [U,EYLQIQ- [ TeYuQIQ @26
r r
where

20



Y

C,Pu® =8; +Lim [T,P.QIQ (2.27)
r

£

which is only a function of the local geometry in the vicinity of point P. The
integraton in Eq.2.27 can be carried out by using Eq.2.22 with the appropriate
integral range according to the local configuration of point P. The Cj;(P,Q) can also
be calculated from the concept of rigid body motion[24]. When the body
undergose a rigid body translation, the surface is free of traction and the

displacement is an arbitrary constant. By setting

Q=0

uj(Q) = constant

Eq.2.26 becomes

c,® =-[T,2Q Ir@ 2.29)
T

Comparing Eq.2.27 and Eq.2.28, it is apparent that the former depends on the local

21



geometry of each point and is different point to point. Thus it is very tedious to
calculate. On the other hand, the latter is an integration on the whole boundary
surface with a different kernel funcdon and is easy to calculate for different points
on the boundary. In fact, Eq.2.28 is merely a by-product of the second term on the
right hand side of Eq.2.26 when it is carried out by numerical integradon method.
Therefore, with little effort, the term Cij(P) can be easily obtained. Eq.2.28 is thus
adopted in this paper to calculate the Cj;(P) term.

Eq.2.26 is also known as Somigliana's identity for three dimensional linear
elastostatics with zero body force. In a well-posed boundary value problem, either
tracton or displacement in a direction on a boundary will be prescribed. Therefore,
any corresponding unknown value on the boundary can be solved by the boundary
integral equation of Eq.2.26.

After the unknown boundary tractons and/or displacements have been
solved, the displacement of any point inside the body can be solved by Eq.2.16

from the boundary data. In order to obtain the stresses for the interior points,

Eq.2.16 is differentated and substituted into Eq.2.7. This results in

51 =| Dy PQLQII(Q -5, P.QQI(©Q (2.29)
r r

22



where

D, (P.Q =18, U, . (PQ + k(U PQ + Uy (PQ)

_8n(—1 ™ [(1 2v)(r D .+ T, Sij- r,iSjk) +3 L0 Ty (2.30)

and

sijk(P'Q) = ksjkTm,m(P’Q) + H[Tij’k(P’Q) + le!J(PrQ)]

E

= { 3n_r, 12v)r8+vr8+r,6)3rrr,]
8n(1-v2)r3 Pl ( k k

+av(njr,k+nkr,j)r,i + (1-2v)(3nir,1:,k+ nj8m+nk5u)

- (1-4vn 3, ) 231)
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2.3 Numerical Implementation of Boundary Integral Equation

Owing to the difficulties of solving the boundary integral equation in closed
form for practical problems with complicated geometries and boundary conditions,

it 1 necessary to solve the boundary integral equation numerically.

The procedures for obtaining a numerical solution of the three dimensional
boundary integral equation starts out with a discretization of the boundary surface
I' into m piecewise isoparametric surface elements. Such elements have been well
developed for the Finite Element Method {25]. Each element consists of ny, nodes,
the number depending on what kind of interpolation is employed in each element.
The elements implemented in the present work include three-node linear triangular
elements, four-node linear quadrilateral elements, six-node quadratic tiangular
elements, and eight-node quadratic quadrilateral elements. The shape functions for
the isoparametric elements are derived in Appendix A. The cartesian coordinate of

each node is given by

~ TNEE) 2.32
x; =Xl & x (2.32)

where x;* is the i - Cartesian coordinate of node o, N%(&) is the shape functdon for
node & which is a polynominal functon of inminsic coordinates E=( El,éz ).

Eq.2.32 represents a one-to-one mapping of any point on the element from the

24



three dimensional Catesian coordinate space into the two dimensional ( 5182
coordinate system, as shown in Fig.2.4. The isoparametric elements also use
identical shape function to interpolate any function on the element, such as the

displacements and tractions in the Boundary Element Method. Symbolically,

T
ui =a§1N (&) ui

im A, QA ~A
t =a§lN &) t (2.33)

where u;&, t;* are the nodal values of displacement and tractions, respectively. By

discretizing the surface I' into m segments and utilizing the shape function,

Eq.2.26 becomes

P pm fm o al
i 2 E v, @I@res
rl

b 3_:" JTU(P,Q(&))Na(é)ll(é)dl"(é)u;-n , Pnotsummed (2.34)

T 1=le=1
1“1

where CijP and ujp stand for the coefficients Cjj and displacement in j-direction of
nodal point P, respectively. The integral over the whole surface is carried out by

summing up the integral over each element surface I'|. The 5od and u is the

25
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Figure 2.4 Mapping of Isoparametric Elements
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traction and displacement in i-directon of node  in element 1. The term Ji(&) is
the determinant of the Jacobian matrix of element 1 deduced from the change of the
integration variables from the Cartesian coordinate to the intrinsic £-coordinate

system. Itis found to be

a (o3
ox; A, :E"I ON"(5,.5) o ,:‘g“l oN a(él’az) o
Bxi aél agz aél B 52
18 =|3e | = =
1 )
i % 9% wINYE L) o T ONTELE) o
3k 3k T —— 2y —— xS
1 2 =1 35:1 a=1 aéz
(2.3%)

Similary, Eq.2.28 is rewritten as

P
Ci=-2 [T,P.Q@MEere 2.36)
I.l

A Gaussian quadrature scheme can now be applied to accomplish the integration.
For the case when the point P is not on the element which is being integrated over,

the Gaussian quadrature is straight forward, that is,

27



[reodre =L,z wiwbw @8 5 @
1-‘l.

where

¥(P.E) = U, (P.QENN"(OI(E)

or

¥(P.5) =T, (P.QE)IN"(E)®)

In Eq.2.37 n, and ny are the order of Gaussian quadrature and w 12 and wzb are
the weights of the corresponding Gaussian integration points & 1 &2 , respectively.
When point P is one of the nodes of the element under integration, the standard
Gaussian quadrature will not give accurate results because of the 1/r and 1/r2
singularities of Uij(P,Q) and Tij(P,Q), respectively. Therefore, special treatment of
this singular integral must be used in order to obtain an accurate solution. The
method employed here follows the work of Rizzo and Shippy [15]. The element is
divided into triangles according to the position of the point P as shown in
Appendix B. Inside each triangle, the &-coordinate system is transformed into a
local polar coordinate system , r and 6, and the d& term in the integral becomes
rdrd®. The additional r due to this ransformation eliminates the 1/r singularity of
the kernel Uj;(P,Q). Gaussian quadrature can then be applied to the polar
coordinate system. Of course, one more transformation is needed to map the r,8

coordinate system to another polar coordinate system r and 8 so that the range

28



varies from -1 to 1. The details of the procedures are illustrated in Appendix B.
For the integration of the kernel Tij(P,Q), a 1/r singularity remains after the
wansformation from the &-coordinate to the polar coordinate. However, by

substtuting Eq.2.36 into Eq.2.34, Eq.2.34 can be rewritten as

3 P
Z [T e.00u@re
rl

2T *E! 3¥ f’r P,QE)N* @) (£)dI(E)
-2 % jUij<P,Q<§))N O@r® - £ I | T,e.00N @ue

T
fi ‘ (2.38)

Distinguish the elements containing point P from those elements without point P for

the integration involving the kernel T;;(P,Q), and Eq.2.38 becomes

m ¢ P
= [TP.Q@n e

I

M8

N mxnm . e
Z [ueeonediere LI [T @@ @u @
T, r,

131

Mpnm o a m - -~
L E [Teeenowieares X [Teeoneaes @39
I T,
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where my is the total number of the elements excluding point P and mp is the total
number of the elements including point P. Obviously, m = my + mp. Combining

the last two terms on the right hand side of Eq.2.39, results in

ljuJ =
) [ueeen@n@rod 2T [re.cen@n@are
12emt ) V5 1 S RN 1 j
I-1 rl
mpnm 4 al
- BE, [ T,@QEN0C®) 8 ,p7Edr e (2.40)
rl
where
=% [1eQ@nre (2.41)
rl

Eq.2.41 is the negative of the integral of the kernel Tij(P,Q) over the elements
which do not contain the point P, hence, Eq.2.41 is no longer singular. As for

Eq.2.40, the remaining 1/r singularity of the kernel Tij(P,Q) is removed by the

special shape function N*(&) - Oop in the last term on the right hand side of

equation because when a coincides with point P ,the constant term is eliminated

30



and thus the smallest order of the shape function is of order r. This addidonal r can
cancel the 1/r singularity after the coordinate has been transformed into the local
polar coordinate. Using this procedures all the singularities are eliminated and

Gaussian quadrature can be used.

Eq.2.40 represents an equation at each discrete point P on the boundary
surface constraining the boundary displacements and boundary tractions in the i-

direction. For a surface including N nodes, Eq.2.40 can be expressed as

() ()
] j
u? . &
P pi 1 2 N j 2 N ]
Cou*[‘U"U’ """ ’IUk >{gil’gij’ """ T=ij ﬁ roee
o &
Luj J 1/

n ,
where each term of Tj; for node n is the integration summed up from the

contribution of the elements which share the same node n. The same applies for

n
Llij . Eq.2.42 can be rewritten as

u}’+>: B =3 (2.43)
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This equation can be expressed more simply by combining the first term into the

summation on the left hand side, i.e.,

N ™ N -

T TN =3 UM (2.44)
n=l Y ] n=1 1Y}

where

f.n =T. forn=P

ij j

“n P
T, =I5+ for n=P (2.45)

Another way of dealing with the singularity which is worthy to menton here is
through the use of rigid body moton. For a rigid body motion in direction j,

Eq.2.44 reducesto

N 7
ZT. =0 (2.46)

This indicates that the sum of Tj *n from each node in a row for certain direction j

should be zero. Hence the value of the singular term Tij*P when n = P can be
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easily calculated once all the other terms are known, that is,

tP -p
j a=t Y
n=P

Mz
~

(2.47)

For three dimensional problems the indices i and j range from 1 to 3. Therefore,
for a surface including N nodes, the dimension of the total algebraic system of
equations formed by Eq.2.44 for each node in each direction is 3Nx3N. The

system can be represented in matrix form as

T*u=U" (2.48)

The matrixes T* and U* are rearranged by interchanging the suitable columns on
each side of equation so that all the unknown variables are contained in a column
vector x and all the prescribed values of the boundary are included in the column y

on the other side of the equation. Symbolically,

Ax =By = f (2.49)

The system of equations can now be easily solved by the Gaussian elimination

method.
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After all the boundary data are obtained, the displacements and stresses at
interior points are solved by substituting the boundary tractions and displacements
into Eq.2.16 and Eq.2.29, respectively, and using the shape functions to carry out

the integration.

2.4 Subregion Technique

Since the boundary integral equation is a constraint relation between
boundary tractions and boundary displacements with the kernel functions which
include the term 1/r and 1/r2, any two distinct points on the boundary can not
coincide. Therefore problems for which the boundary includes two contacting
surfaces can not be solved by the Boundary Element Method using a single region.
Partitioning the whole boundary into subregions is necessary to deal with such

problems.

Consider for simplicity the case where the body is partitioned into two
subregions. Similar procedures can be followed to separate the body into more
than two regions. A body with domain Q surrounded by the boundary T is
partitioned into two subregions; one consists of domain Q1 and boundary I'j and
the other possesses the domain €25 and boundary I'5, as was shown in Fig.2.5.
The two regions share the same interface I';. Each subregion can be treated as an

independent body. Thus the procedure described in Section 2.1 can be used to
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Figure 2.5 Domain pivided into Two Subregions
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form the system of algebraic equations for each subregion. Before the compatibility
and equilibrium conditions are enforced along the interface between two
subregions, the corresponding columns of the matrix U* of unknown tractions and
the corresponding columns of the matrix T* of known displacements in Eq.2.48
must be interchanged so that all the known and unknown variables will be at the
same side of the equations. Let A and By be the kernel matrices related to the
unknown column vectors UkeS and Ke$ on the external surface of region s after
rearrangement. Furthermore let t;S, u;S be the unknown tractions and unknown
displacements on the interface of region s. The system of equations for subregion

one can be expressed as

1 1
Uk, K.
AI - Bl 2
L} ! (2.50)

After pre-multiplying each side by the inverse of By, Eq.2.50 becomes

1 1 1
De| Dy ||UK K,
= )
| D t u! @3D
e u
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where D1 = Bl'l A1. By the same procedure the system for the second subregion

becomes

2 2
DL | D, ||uk K
D.2 D?. i |
e | T * ‘ (2.52)

uil = uiz =14 (2.53)
Equations 2.51 and 2.52 can be combined to be [26]
1 1 1 1
De| Dy 0 Uk, K.
1 1 212 =
D; | D - D | D G 0
2 2 2 2
0 | D) |De!| |Uke K. (2.54)
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(2.534)

L N2 + Nj ) equations for 3Ng! unknowns on the

This is a system of 3( Ng
external surface of subregion one, 3Ng2 unknowns on the external boundary of
subsurface two, and 3Nj unknown tractions on the interface. The unknown
displacements on the interface can be obtained through either Eq.2.51 or Eq.2.52

after Eq.2.54 has been solved. The equation which is not used can be used as a

check.

This method is simple and direct. However it is not usually adopted
because the inverse of the matrix of kernel By must be calculated for both
subregions. This involves a tremendous amount of computer processing time and

requires a lot of memory space. Therefore, this method is not used in this paper.

An alternative procedure which eliminates the need for solving the inverse
of the matrix is described herein. After the appropriate columns of T* and U™
have been interchanged, the system of equation of the two subregions are

assembled into two big matrices and two column vectors as

t
1 Uk ! K,
A 0 B 0
: .
e K;
0 A 0 BZ
2
5 u?
(2.55)
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To be more specific,

1 1 1 1 1
Ace Aex Uk, B.. B ei K:
0 0
1 1 1 1 1
e | A 5 B, ii u;
2 2 2 2 2
Aee Aei Uke Bee Bel K2
0 0
2 2 2 2 2
e | A 4 = | By u?
(2.56)

1 1 1 1 1
Aee Aei Bei Uke B ee f1
0 0
1 1 1 1 1
Axe Aii Bu t‘ _ Bie Kc _ f2
2 2 2 2 2
-Ag | Ae | By Ukz B.. Ke f,
0 0 5
2 2 2
S - - O B B, f,
(2.57)

Since now the known variables appear on the right hand side of the equation and

the unknown variables appear on the other side,the equatons can be solved without
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any difficulty. Although this method avoids solving for the inverse matrix and thus
saves a lot of computer processing time, it still has the drawback of using two big
marrices which occupy tremendous storage space. Therefore another algorithm is

introduced next.

Let the numbering of the nodes along the interface be always arranged at the
position following the external nodes for both subregions, as shown in Eq.2.50.

Rewrite Eq.2.50 for the first region as follows

1 1
1 Uke 1 KC

where the dimensions of each block are as followin g

Al and B} are 3N, + N))x 3N
A, and B are (N} + N)x 3N,

K, and Uk, are 3N'x 1

1
til and ui1 are 3Nix 1

Be! and K1 can be multiplied together to form a known column vector f1
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&
>
|
o,
+
wb—‘
r'r-

—

to

e | et

(2.60)

Note that the left hand side of Eq.2.60 now become a matrix with dimension of
3(Ne! + Nj) by 3(N ¢! + 2N;) multiplied by an unknown vector with dimension of
3(N¢1 +Nj) by 1. Obviously, this system can not be solved since there are 3Nj
more unknown than the total number of equations. Before we proceed to the

second subregion, Eq.2.60 is reduced to

-1
Ae 1
Al gt | Ve

(-

4 (2.61)

—c s -
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Eq.2.61 can be represented more convenienty as

A : 1
Gl | |Uk, g
0 H1 up hl
g
(2.62)
Eq.2.62 can be treated as two set of equations ,viz.
*1 u!
N Ukl| + Gl o= gl
0 g
1
(2.63)
1
HI ui = hl
1
5 (2.64)

The same procedure can be applied to the second subregion and a similar set of
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equations is obtained

» 2 2
A :
© Ukz + G2 N = 2
0 2 §
! (2.65)
2
H2 4 = | p2
¢ (2.66)

Note that the unknowns in Eq.2.64 and Eq.2.66 now only involve the unknown
displacements and unknown tractions on the interface berween the two subregions.

By applying the compatbility and equilibrium condition of Eq.2.53,

tl=-52=y

1oyl =y
111 =u1 =u1

these two sets of equations can be assembled together as Eq.2.67 to solve for the

unknown tractions and unknown displacements along the interface.
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" G h2 (2.67)

where

After the displacement uj and the traction t; of the interface have been solved using
Eq.2.64, the unknowns on the external surfaces of each subregion can be solved

through Eq.2.63 and Eq.2.65.

This method not only saves computer excution time by eliminating the need
for solving for the inverse of the matrices but also saves a lot of memory storage
space because the procedure can be performed on the system of equations of each
subregion separately with little effort by using an index control in the computer

program. It is therefore used in this paper.



2.5 Discontinuity of Tracton

The data of prescribed tractions and prescribed displacements must be read
into the computer according to the element rather than the node due to the possibility
of a node lying on a position without an unique tangent plane. That is, when a
node is at the intersection of two or more planes, the traction acting on this node
depends on which plane is considered, since each surface is associated with a
different normal. For example, in Fig.2.6, three elements share the same node P.
For the sake of easy interpretation, we let the unit normal of these three elements

coincide with the unit vectors of the Cartesian coordinate system.

-~ _/.\
n1—1
— N
I12=_]
i, =

The component of the traction of node P in direction i on element 1 is the normal
stress ¢11 but the traction of point P in the same direction on element 2 is the shear
stress G4 and the traction in the i-direction on element 3 is the shear stress G at
point P. Therefore, the prescribed traction must be input according to the element
so that each different traction on the same node can be multiplied by an appropriate
kernel contributed from each element surface. Also note that when the displacement

in one direction is prescribed at a certain node, for a unique solution only one of
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the corresponding tracdons on this node can be unknown and all the others must be
prescribed. For the same example in Fig.2.6, two of three tractions on three
different elements must be known if the displacement of that node is prescribed.
Eq.2.37 in fact is a concise expression for convenient intrepretation. To be more

specific, it should read

q
. p
> I F5  e w ;
T _ o Upwe Upoe Ugprne, %’
(2.68)
Thus, the equation for a certain row is
et TP s = U+ TR U P (2.69)

When the tractions t]P, tP and t3P are known at point P, they must be muldplied
by these different kernel function UIP , UsP, and U3P which are calculated from
each different element with different normal vector. As for the case of the
displacement being prescribed, only one traction can be unknown, say t2P, and the

traction on another surface tlp and t3P must be forced to be known. Thus, the
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Figure 2.6 Illustration of Different Tractions at Node P
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equaton becomes

ot T U 0T = e U (2.70)

so that only one unknown is left on the right hand side of the equation which is
needed to be solved and all the known values are summed up on the left hand side

of the equation.

One incident merit of inputting the traction element by element is that

discontinuous tractions can be modeled exactly.
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CHAPTER THREE
LINEAR ELASTIC FRACTURE MECHANICS

3.1 Introduction

The presence of cracks in a material causes a stress concentration in the
vicinity of the crack tip. Consequently, plastic yielding or microcracking will occur
in the region surrounding the crack dp. Linear elastic fracture mechanics assumes
that the nonlinear deformations are restricted to a region whose dimensions are
small compared to other characteristic dimensions, so that the elastic solution
provides an accurate description of the stress and displacement fields in the vicinity

of the crack tip. This is often referred to as small scale yielding (S.5.Y.).

It can be shown that the loading on a crack is in general a superposition of
three independent modes as shown in Figure 3.1. The first (Fig.3.1.a) is called
the crack opening mode, or mode-I, which is a result of a relative normal separation
of the crack surfaces (symmetric with respect to x-z and x-y planes). Fig.3.1.bis
called the crack sliding mode, or mode-II, which is associated with a relative sliding
displacement in the x-direction (symmetric with respect to x-y plane and skew-
symmetric with respect to the x-z plane). The tearing mode (mode-III) corresponds
to reladve motion in the z-direction of the two crack surfaces (skew-symmetric with
respect to the x-y and x-z planes). Using Westergard's technique, Irwin and
Williams showed that the stress and displacement fields in the vicinity of a crack tip
can be expressed as an infinite series whose leading term is square root singular.
The coefficient of this singular term is defined as the stress intensity factor. With

respect toa r-6 polar coordinate system as shown in Figure 3.2, the stresses and
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(a) Mode I

(b) Mode II

Figure 3.1 The Three Basic Modes of Crack Surface Displacement
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displacements near a crack tip are given by [27]

Mode |
_ 1 9 0 ...38
Oxx= I cos > [ 1-sin > sm )
K
_ 1 0 39
Cyy= cos [ 1+ sin=- ]

2nr 2

K,
—L gind cose cos32

0]
Xy~ [omr 2 2

O=V (Oxx+t Oypy )y Oxg= 0y, =0

K
1 [T .8 28
u, = T\ 3% cos [1-2v+sin“= ]

K
uy =t [ sind (2-2v-cos’S ]
u3=0 3.1
Mode I
K
S ) 9 0538
Oxx J_z_x_rsmz[z-r-cosz cosz]
K
Cyy= Ji 9 cose cos?"_e
K
_ M 0 Cein8 036
Oy —fﬁcos?[l sm2 smT]

Oz=V (Oxxt Oyy )y  Oyz=Oy,=0
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= r 28
u, = Z{cosz (-1 +2v +sin 7]
u, =0 (3.2)
Mode III
Cyg = - Km sing
“ o 2
K
Gy = 7I:r cos%
Oxx= Oyy= Gpz= Oxy =0
u1=u2=0
K
-_m [r 8
u, = m > sm2 (3.3)

where Ky, K11, and Ky are the stress intensity factors corresponding to modes I,
I, and II, respectively. Note that Eq.3.1-3.3 are valid only when r << L, where L
is another characterictic length of the geometry (may be the crack length). Also note
that these equations do not contain any information about the externally applied
loading, crack geometry, geometric configurition, etc, and that the stress intensity

factors are not functions of the local coordinate r and 8. These factors are embedded
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Crack Front

Crack Surfaces

Figure 3.2 Coordinate and Stress Components for Crack Tip Stress Field
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in Ky, K1, and K1 That is, the stress intensity factors Ky, Ky, and Ky, which
must be determined by the boundary conditions and the loadings control the
magnitudes of the stress and displacement fields around the crack tip. Thus, a
given combination of values of Ky, Ky, and Kyyy represents uniquely a crack tip
stress field environment for small scale yielding. The determination of the stress
intensity factors is thus the most important task in linear elastic fracture mechanics.
Although Eq.3.1-3.3 are valid for the plane strain problem, they may be modified
to represent the plane stress problem by letting 6,= 0 and substituting v with

v/(1+v).

Eq.3.1 and Eq.3.2 were derived for plane problems. However, it was
shown by Sih and Liebowitz [28] that for an elliptical crack in a three dimensional
linear elastic body, the local stress and displacement fields along a crack front are a
superposition of plane strain and antiplane shear. Hence, Eq.3.1-3.3 can still be
used for three dimensional crack problems as long as the coordinate system is
allowed to move along the crack front with its z-axis tangent to the crack front and
the y-coordinate perpendicular to the crack surface, as shown in Fig.3.3. Referring
to the moving coordinate, the stress intensity factors are now also a function of the
position of the origin on the crack front and the formulas are not available for a
crack near a free surface because the stress singularity is not of inverse square root

there.
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Figure 3.3 Coordinate System on the Crack Front for Three Dimensional Crack
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3.2 Calculation of Swress Intensity Factors Using the Boundary Element Method

The variation of any function in an isoparametric element is polynominal.
The degree of the polynominal depends on the number and arrangement of the
nodes. Therefore, if a quadratic surface element is used in the vicinity of a crack,
the distributions of the displacement and traction in the element will have at most
quadratic variations. Since the variation of the displacement is square root of r and
the variation of the tracton is inverse of square root of r around the crack, a fine
mesh is needed to model the crack so that the quadratic variation can imitate the
correct distribution inside each small segment. However, even this refinement

cannot achieve a high degree of accuracy.

Fortunately, this problem was solved by Barsoum [18] who modified the
quadratic isoparametric element by relocating appropriate midside nodes to the
quarter-point to capture the inverse square root singularity. Even though he had
done this for the Finite Element Method, a similar approach can be used in the
Boundary Element Method. For example, consider an eight node quadrilateral
element with two sides having equal length L perpendicular to the crack front ( side
1-5-2 ),as shown in Fig.3.4. Relocate the two midside node ( 6 and 8 ) to the
quarter-point near the crack front. Denoting the distance originated from the crack

front to any point on the element by r, then

8
r =i=21 Ni(&y&z)ri (34)
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Crack Front

Crack Surfaces

Figure 3.4 Illustration of 8-node Quarter Point Element
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Choosing [ =Ty=rg= 0, Iy=ry=1;= L, and Ig=Tg = L /4, Eq.3.4 becomes

-

r= Gy DU+ ENA+ 8 L+ €8+ G- DE, +D L

2
Largpa-gpd Laspya-gi e La-gpa- gk

Simplifying,

§2=2\/%- 1 (3.5)

Substitution of Eq.3.5 into Eq.2.33, leads to the following variation of the

displacement and traction in direction i versus the distance r
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u, 9] =él1 N u%‘

6

=[(-u.1~u.2-u?7’—u‘.‘-u.5+2u. +u7+2u§)
1 1 1 1 1 1 1 1
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-4-5(3ui -3ui -u +u.x+4ui -4ui)

i
52
e 3heut e oot o2l -2 [

+[(u.1+u.2+u?+u'.‘-2u.6-2u§)
1 1 1 1 1 1
2

§
+[uf+—2-1-(-uil+ui2)+?1(ui1+ui2-2ui5)]

which can be rewritten as,
_al 2 /r 3r
ui(r)-Ai +Ai\/% «r—Ai T

Similary,
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The displacement variation given in Eq.3.7 contains the square root of r term which
is asymptotically correct. However, the traction appearing in Eq.3.8 does not
include the correct inverse square root of r term needed to model the stress
singularity around the crack tip. The correct singularity is obtained by multiplying

the right hand side of Eq.3.8 by the factor [19]

o0 =/L = 5; 1 (3.9)

such that the variation of traction becomes

t.(r)

1 2 /r 3¢ ,L
(Bi+Bi r+B1E) T

1 /L 2 3 /r ~
Bi‘,? +Bi +Bi 'E (310)

which possesses the correct inverse square root of r term.

For six node triangular quadratic elements, if all the sides are straight as
shown in Fig.3.5, by similar procedure, the relation between r and the nature

coordinate & can be obtained as



Crack Tip

Figure 3.5 Tlustraton of 6-node Quarter Point Element
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g =1- /< (3.11)

where ¢ is the ratio &, / §3 which is constant for a given direction r. It is easy to
show that the variation of the displacement has the same form as Eq.3.7 by
substtuting Eq.3.11 into Eq.2.30 with the help of appropriate shape function. The
correct traction variation is obtained by multiplying the shape function for traction

by the correction factor

o= [S=—1_ (3.12)

The swess intensity factors are then evaluated by the displacement correlation

technique [29]. By setting 6 = 180° in Eq.3.1-3.3, the displacement fields become

201y 3
lll = “E ? KI

_20-vh [3%
112 = _E ? KII

_2(1+v) >
u3__E_ ?r - (3.13)
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Equating the square root of r term in Eq.3.13 to that in Eq.3.6 yields

E / T 1 2 3 4 5 § 7 8
= - - - - - - 2 +
7(1-\/2) o1 [( ‘.11 ul Ul u1 ul + _Ul ul + 2111 )

+ -g—‘ (3u11 - 3u12 - ul3 + “14 + 4>u16 - 4u18 )

2

=L ul1 - ul2 + ul3 + ul4 + 2u15 - 2u17 )]

3

= 4 5 6 7 8
Kp= 2(1- 2) / [(-u, -u -u -u2 -uy” + 2u,0 )+ 2, )

il (3u 2 - u23 + u24 + 4uz6 . 4»u28 )
E“2
+ Tl Cot-utrudeut s 20,7 20,7)]
K +2 T+2
m = z(lw)\/ [Cug "oy ® -y ? -0y -uy® 2, u;°)

+§1(3u3 -3u3 .u3 +u, +4u3 -4u38)

2

+T1(-u31-u32+u33+u34+2u35-2u37)]

(3.14)
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For non-symmetric problems both crack surfaces must be modeled. The stress

intensity factors are given by

K= 4(1E2),/ (G 2w+ 205 07+ 20 %) - (2 604 20704 T4 20"

& - . - -
+5‘[( - u13 + ul4 + 4u16 - 4g18 )-(- ul3 +u e+l - 40} )]
A :

+ 200+t -207) - (u+ug - 2077 ))

K= 4(f 5 [ L e uy e 20,8 0T+ 20,8 - (a2 wite 200+ 0+ 20)]

él[( w? +ut e dub-dud)- () ute alf - ault )
2

& 3,4 7 s34 4 7
+?[(u2 +, -2u2 )-(u2 +u,” - 2u, 11}

K

m= 4(1+v)/ (u3 u3+7u3 «i-u3+2u8)(u3 u3+2u +u +2u8)]

B gt e du o dud ) D) + it 405 - 4u30))

2
+% [(oy? +uy*- 20, 7)- (0P ) - 20,77 )])
(3.15)

where the asterisk refers to the displacement of the node on the element opposite to
the one shown in Fig.3.5. Note that Eq.3.14 and Eq.3.15 involve the natural
coordinate E,l up to quadratic terms. Therefore a quadratic variation of the stress

intensity factor in the § direction can also be represented.



CHAPTER FOUR

VERIFICATION PROBLEMS

Several verification problems were studied to examine the accuracy and
efficiency of the Boundary Element Method. This chapter presents the results
obtained using the techniques described in the ﬁrcvious chapters for problems
whose analytical solution is known as well as for a problem whose solution was
obtained numerically by other researchers using different techniques. All problems
were performed using single precision on a CRAY-X-MP. The material properities

are: E = 30,000 ksi and v = 0.3.
4.] Prismatic Bar under Uniform Tension

The first verification problem is a linear elastic prismatic bar under simple
tension as shown in Figure 4.1. Only one-cighth of the specimen is modeled due to
the symmetry of this problem. The domain is chosen to be a cube with side length
equal to 1 subjected to a uniform tension on the surface z=1. The planes x=0,
y=0,and z=0 are fixed in x, y, and z direcdons, respectively. The geometry and
boundary segments are given in Figures 4.2 to 4.5. Four different elements: 3-
node triangular element, 4-node quadrilateral element, 6-node triangular element,
and 8-node quadrilateral element were tested. Different schemes of Gaussian
quadrature were chosen to perform both the regular integral and singular integral as
described in Section 2.3. The traction in direction z at point A and the transverse
displacement in the x-direction of point B in Figure 4.1 were calculated and

compared with the exact solution [ 31]:
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Figure 4.1 Geometry and Boundary Conditons for Prismatic Bar in Uniform Tension
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Number of Nodes: 8
Number of Elements: 12

Figure 4.2 3-Node Triangular Element Mesh for Uniform Tension Problem
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Number of Nodes: 8
Number of Elements: 6

Figure 4.3 4-Node Quadrilateral Element Mesh for Uniform Tension Problem
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Number of Nodes: 26

Number of Elements: 12

Figure 4.4 6-Node Triangular Element Mesh for Uniform Tension Problem
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Number of Nodes: 20

Number of Elements; 6§

Figure 4.5 8-Node Quadrilaterial Element Mesh for Uniform Tension Problem
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u,=-v o/E @.1)

The results are summarized in Table 4.1 to 4.4. The results indicate that as long as
the singular integral is evaluated with at least a 3x3 quadrature, then the accuracy
depends on the number of points used to evaluate the regular integral. For reliable
results the regular integral should be evaluated using at least a 3x3 quadrature for

quadrilateral elements and 6 points quadrature for triangular elements.

Tables 4.5 to 4.8 demonstrate the accuracy of the mult-domain technique.
The conclusions are similar to those for the single region. However, the two-
region results are more accurate since for the same number of integration points

there are more nodes.
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NRI|NSI [ u, (X10 %) Error (%) ts Error (%) Szgcgé?;'
1 [1xl} -=-==—-- >100 | -——=-- >100 0.0628
2x2| 1.4397 43.97 -0.4897 51.03 0.1156
3x3] 1.4214 42 .14 -0.5409 45.91 0.2056
4x4| 1.4197 41.97 ~-0.5451 45.49 0.3362
5x5f 1.4197 41.97 -0.5454 45.46 0.4548
6x6| 1.4197 41.97 -0.5454 45.46 0.7030

3 |1x1} 0.7303 26.97 -0.4628 53.72 0.1110
2x2| 0.9376 6.24 -0.9861 1.39 0.1629
3x3| 0.9600 4.00 -1.0470 4.70 0.2430
4x4| 0.9582 4.18 -1.0611 6.11 0.3808
5x5| C.9580 4.20 -1.0611 6.11 0.5437
6x6| 0.9580 4.20 -1.0611 6.11 0.7409

4 {1x1] 0.7244 27.56 -0.4808 51.92 0.1312
2x2{ 0.9310 6.90 -1.0121 1.21 0.1852
3x3] 0.9548 4.52 -1.0800 8.00 0.2762
4x4| 0.9549 4.51 -1.0862 8.62 0.3998
5x5| 0.9547 4.53 -1.08867 8.67 0.5635
ox6| 0.89547 4.53 -1.0867 8.67 0.7584

6 [1xlf 0.7564 24.36 -0.4041 58.59 0.1954
2x2| 0.9748¢ 2.54 -0.9250 7.50 0.2466
3x3] 1.0035 0.35 -0.9907 0.93 0.3379
4x4t 1.0017 0.17 -0.9967 0.33 0.4635
5x51 1.0018 0.19 -0.9971 0.29 0.6254
6x6f 1.0019 0.19 -0.9971 0.29 0.8280

7 |1x1] 0.7559 24.41 -0.4031 59.69 0.2184
2x2] 0.9739 2.61 -0.9237 7.61 0.2692
3x3] 0.9984 0.16 -0.9897 1.03 0.3623
4x4|{ 0.9988 0.12 -0.9956 0.44 0.4865
Sx5| 0.9989% 0.11 -0.9960 0.40 0.6615
6x6| 0.9989 0.11 -0.9960 0.40 0.8518
12 |1x1] 0.7532 24.48 -0.4072 59.28 0.4131
2x2| 0.9728 2.72 -0.9280 7.20 0.4764
3x3| 0.9979 0.21 -0.9937 0.63 0.5624
4x41 1.0002 0.02 -0.999%7 0.03 0.6848
5x5f 1.0001 0.01 -1.0000 0.00 0.8425
6x6| 1.0001 0.01 -1.0000 0.00 1.0503

NRI : Number of Gaussian quadrature points for regular integral
NS I': Number of Gaussian quadrature points for singular integral
Exact solution : u=1.E-06, t=-1.00

Table 4.1 Beam in Uniform Tension, 3-node Triangular Element: Comparison

of Error for Displacement and Traction, and CPU Time
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—
NRI | NSI UA(X106) Error (%) ts Error (%) ?Egc(};én )e
1xljlxl| —-=----- >100 | =----- >100 0.0565
2x2| 1.3438 34.38 -1.0000 0.00 0.1445
3x3} 1.3453 34.53 -1.0000 0.00 0.2951
4x4| 1.3453 34.53 -1.0000 0.00 0.4984
Sx5| 1.3453 34.53 -1.0000 0.00 0.7735
6x6| 1.3453 34.53 ~-1.0000 0.00 1.0980
2x2|1xl] 0.9264 7.36 -1.0000 0.00 0.0764
2x2| 0.9559 4.41 -1.0000 0.00 0.1659
3x3}] 0.95¢8 4.32 -1.0000 0.00 0.3120
4x4| C.9568 4.32 -1.0000 0.00 0.5217
5xS) 0.9568 4.32 -1.0000 0.00 0.7866
6x6] 0.9568 4.32 -1.0000 0.00 1.1149
3x3|1x1l] 0.9689 3.11 -1.0000 0.00 0.1118
2x2] 1.0008 0.08 -1.0000 0.00 0.2003
3x3f 1.0017 0.17 -1.0000 0.00 0.3492
4x4} 1.0017 0.17 -1.0000 0.00 0.5586
5x5( 1.0017 0.17 -1.0000 0.00 0.8286
ox6| 1.0017 0.17 -1.0000 0.00 1.1609
4x411xl] 0.9673 3.27 -1.0000 0.00 0.1582
2x2] 0.9992 0.08 -1.0000 0.00 0.2502
3x3| 1.0000 0.00 -1.0000 0.00 0.3897
4x4] 1.0000 0.00 -1.0000 0.00 0.6060
5x5; 1.0000 .00 -1.0000 0.00 0.8679
exél 1.0000 0.00 -1.0000 0.00 1.2027
5x5|1x1l] 0.9673 3.27 -1.0000 0.00 0.2204
2x2} 0.9991 0.09 -1.0000 0.00 0.3112
3x31 1.0000 0.00 -1.0000 0.00 0.4604
4x4| 1.0000 0.00 -1.0000 0.00 0.6677
5x51 1.0000 0.00 -1.0000 0.00 0.9362
6x6{ 1.0000 0.00 -1.0000 0.00 1.2642
gxef{lxl] 0.9673 3.27 -1.0000 0.00 0.2985
2x2] 0.9991 0.08 -1.0000 0.00 0.3882
3x3f 1.0000 0.00 -1.0000 0.00 0.5335
4x41 1.0000 0.00 -1.0000 0.00 0.7416
5x5f 1.0000 0.00 -1.0000 0.00 1.0112
6x6] 1.0000 0.00 -1.0000 0.00 1.3333

NRI : Number of Gaussian quadrature points for regular integral
NSI: Number of Gaussian quadrature points for singular integral

Exact soluton : u=1.E-06,

=-1.00

Table 4.2 Beam in Uniform Tension, 4-node Quadrilateral Element: Comparison
of Error for Displacement and Traction, and CPU Time
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wrr | Nst | 0, (*10%) | Error (%) t Error () | T
1 {ixi| =------ >100 | —-====- >100 0.3332
2x2 1.8007 80.07 -0.4114 58.86 0.5378
3x3] 1.8843 88.34 | -0.3102 68.98 0.8721
4x4 1.8734 87.54 -0.3153 68.47 1.3492
5x5 1.8759% 87.58 -0.3239 67.61 1.9639
6X6 1.8776 87.76 -0.3224 67.7¢ 2.7301

3 11xl| ------ >100 | -=-=---- >100 0.5478
2x2 0.7482 25.18 | -1.3980 39.80 0.7635
3x3| 0.8437 15.63 | -1.2393 23.93 1.0886
4x4| 0.8473 15.27 | -1.2196 21.96 1.5714
Sx5| 0.8459 15.41 | -1.2299% 22.99 2.1947
6x6| 0.8465 15.35 ]| -1.2291 22.91 2.9585

4 |1xl| =----- >100 | -==--—- >100 0.6481
2x21 0.7151 28.49 | -1.4042 40.42 0.8548
3x3| 0.8083 19.17 | -1.2411 24.11 1.1982
4x4| 0.7938 20.62 | -1.2162 21.62 1.6839%
5x5{ 0.79%70 20.30 | -1.2266 22.66 2.2990
6x6| 0.8002 19.98 | -1.2260 22.60 3.0547

6 |lxl| ------ >100 | ===--- >100 0.%212
2x2 0.9357 6.43 -1.1711 17.11 1.1272
3x3 1.0349 3.49 | -0.96438 3.52 1.4828
4x4 1.028¢6 2.86 | -0.9564 4.36 1.9553
5x5| 1.0278 2.78 | -0.9667 3.33 2.5755
6x6] 1.0284 2.84 | -0.9653 3.47 3.3316

7 |1xl|{ =------ >100 | -=-=-=-- >100 1.0463
2x2| 0.9252 7.48 | -1.2021 20.21 1.2503
3x3f 1.0422 4.22 | -0.9718 2.82 1.5904
4x4 1.0185 1.85 | -0.9836 1.64 2.0833
5x5| 1.0176 1.76 | -0.9794 2.06 2.6395
12 {éx6| 1.0200 2.00 | -0.9791 2.09 3.4563
1xl| =------ >100 | =====- >100 1.9069
2x2 0.9057 9.43 -1.2149 21.49 2.1113
3x3] 0.9799% 2.01 | -1.0127 1.27 2.4536
4x4| 0.9926 0.74 f -1.0061 0.61 2.9403
5x5) 0.9962 0.38 | -1.0021 0.21 3.5512
6x6| 0.9986 0.14 4} -1.0017 0.17 4.3225

NRI : Number of Gaussian quadrature points for regular integral
NS I : Number of Gaussian quadrature points for singular integral
Exact solution : u=1.E-06, t=-1.00

Table 4.3 Beam in Uniform Tension, 6-node Triangular Element: Comparison

of Error for Displacement and Traction, and CPU Time
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NRI| NST | u, (%10 *) | Eror (%) tg Error (%) C(igcgéﬁl?
1x1l|1xl| ~------ >100 | =------ >100 0.1826
2x2| -—--—-- >100 -0.3553 64.47 0.4259
3x3f ------ >100 -0.3430 65.70 0.8282
4x4f -=----- >100 -0.3441 65.53 1.3935
5x3| ------ >100 -0.3441 85.59 2.1057
6xb6| —=----- >100 -0.3441 65.59 2.9901
2x2)1xl] 1.1266 12.66 -0.6751 32.49 0.258S
2x2} 0.8189 18.11 -1.2086 20.8¢6 0.4985
3x3| 0.8074 19.26 -1.2429 24.29 0.85854
4x4| 0.8086 19.14 -1.2390 23.90 1.4562
5x5| 0.80886 19.14 -1.1979 19.79 2.1756
6x6| 0.8086 19.14 -1.2497 24.87 3.0527
3x3|1x1l| 0.9108 8.982 -1.3704 37.04 £.3715
2x2| 1.0389 3.89 -0.9424 5.76 0.6111
3x3) 1.0228 2.28 -0.9710 2.30 1.0103
4x4] 1.0210 2.10 -0.9736 2.64 1.5556
SxS51 0.9814 1.86 -0.9738 2.62 2.2888%
gxse| 1.0208 2.08 -0.9738 2.62 3.1837
4x4{1x1l| 0.9283 7.17 -1.3788 37.88 0.5236
2x2| 1.0187 1.87 -0.9648 3.52 0.7674
3x3f 1.0028 0.28 -0.9959% 0.41 1.1598
4x4| 0.9984 0.16 -0.9984 0.16 1.7182
5x5{ 0.9984 0.16 -0.9990 0.10 2.448¢6
zx6] 0.9984 0.16 -0.9988 0.12 3.3228
5x5|1x1l] 0.9278 7.22 -1.3453 34.53 0.7288
2x2| 1.0139 1.39 -0.96606 3.34 0.9667
3%3] 1.0014 0.14 -0.9971 0.29 1.3594
4x4] 0.9997 0.03 -1.0003 0.03 1.9274
5x5| 0.9997 0.03 -1.0006 0.06 2.6425
ex6| 0.999%7 0.03 -1.0006 0.06 3.4846
ex6|1lxl| 0.9275 7.25 -1.3459% 34.59 0.9826
2x2; 1.0143 1.43 -0.9660 3.40 1.2132
3x3f 1.0018 0.18 -0.9969 0.31 1.6159
4x4| 1.0002 0.02 -0.9997 0.03 2.1875
S5x5f 1.00C0 0.00 -1.0000 0.00 2.8705
6x6| 1.0000 0.00 -1.0000 0.00 3.7663
NRI : Number of Gaussian quadrature points for regular integral
NS I : Number of Gaussian quadrature points for singular integral
Exact solution : u=1.E-06, t=-1.00

Table 4.4 Beam in Uniform Tension, 8-node Quadrilateral Element: Comparison

of Error for Displacement and Traction, and CPU Time
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P X
NRI | NST | U, (X107) | Error (%) ty Error (%) (%Izg:g;ﬁl?
3 |3x3f1 0.942¢6 5.74 -1.0365 3.653 0.6251
4x4| 0.9438 5.62 -1.0418 4.18 1.2028
5x5] 0.9438 5.62 -1.0415 4.15 0.8792
6x6f 0.9439 5.61 -1.0418 4.18 1.6006
4 [3x3] 0.9260 7.40 -1.0529 5.29 0.6661
4x4| 0.9272 7.28 -1.0579 5.79 0.922¢
S5x5( 0.9273 7.27 -1.0582 5.82 1.2458
5x6| 0.9273 7.27 -1.0582 5.82 1.6534
6 |3x3] 1.0034 0.34 -0.9928 .72 0.7982
4x4] 1.0029 0.29 -0.9978 0.22 1.049¢6
5x5| 1.0030 0.30 -0.9981 0.19 1.3701
6x6} 1.0030 0.30 -0.9981 0.19 1.7863
7 13x3] 0.9992 0.08 -0.9923 0.77 0.8463
4x4} 1.0028 0.28 -0.9972 0.28 1.0990
SxS| 1.0029 0.29 -0.9975 0.25 1.4222
ex6| 1.0028 0.28 -0.9975 0.25 1.8274
12 [3x3f C.9974 0.26 -0.9948 0.52 1.2506
4x4f 1.0000 0.00 -0.9997 0.03 1.5061
55 1.0000 0.00 -1.0000 0.00 1.8256
6x6| 1.0000 0.00 -1.0000 0.00 2.2321
13 [3x3}] 0.9974 0.26 -0.9948 .52 1.3041
4x4] 1.0000 0.00 -1.0000 0.00 1.5561
Sx8l 1.0000 0.00 -1.0000 0.00 1.8756
6x6| 1.0000 0.00 -1.0000 0.00 2.2818
NRI : Number of Gaussian quadrature points for regular integral
NS 1: Number of Gaussian quadrature points for singular integral
Exact solution : u=1.E-06, t=-1.00

Table 4.5 Beam in Uniform Tension, 3-node Triangular Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time
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NRI | NSI | u, (% 10%) | Exror (%) ts Error (%) C(E;g:;rrl,?f):

3x3{3x3] 1.0017 0.17 -1.0000 0.00 0.8452
4x4y 1.0017 0.17 -1.0000 0.00 1.3190
551 1.0017 0.17 -1.0000 0.00 1.9215
6x6{ 1.0017 0.17 -1.0000 0.00 2.6509

4x4(3x3| 1.0000 0.00 -1.0000 0.00 0.9502
4x4| 1.0000 0.00 -1.0000 0.00 1.4150
5x5| 1.0000 0.00 -1.0000 0.00 2.0153
6x6| 1.0000 0.00 -1.0000 0.00 2.7682

5x5[3x3] 1.0000 0.00 -1.0000 0.00 1.0912
4x4| 1.0000 0.00 -1.0000 0.00 1.5542
5x5; 1.0000 0.00 -1.0000 0.00 2.1523
6x6| 1.0000 0.00 -1.0000 0.00 2.8998

6x6{3x3| 1.0000 0.00 -1.0000 0.00 1.2692
4x4| 1.0000 0.00 -1.0000 0.00 1.7257
5xS{ 1.0000 0.00 -1.0000 0.00 2.3466
6x6{ 1.0000 0.00 -1.0000 0.00 3.0807

NRI : Number of Gaussian quadrature points for regular integral

NS I: Number of Gaussian quadrature points for singular integral

Exact solution : u=1.E-06, t=-1.00

Table 4.6 Beam in Uniform Tension, 4-node Quadrilateral Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time
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-6 .

NRI|NST [0, (X107) | Error (%) tg Error (%) gzgcgég“;

4 |3x3| 0.7582 24.18 -1.2355 23.55 2.31089

4x4| 0.7391 26.08 -1.2142 21.42 3.2921

5x5| 0.7420 25.80 -1.2183 21.83 4.5192

6x6| 0.7448 25.52 -1.2182 21.82 £.0571

6 |3x3| 1.0412 4.12 -0.9650 3.50 2.8737

4x4| 1.0299 2.99 -0.9536 4.64 3.8452

5x5| 1.0304 3.04 -0.9646 3.54 2.0775

6x6| 1.0311 3.11 -0.9638 3.62 2.6007

7 {3x3] 1.0458 4.58 -1.0546 5.46 3.1014

4x4{ 1.0212 2.12 -1.0357 3.57 2.08%4

S5x5| 1.023%6 2.36 -1.0441 4.41 $.2954

6x6| 1.0257 2.57 -1.0443 4.43 £.8005

12 (3x3] 1.019%7 1.97 -1.0087 0.87 £.8588

4x4| 0.9932 0.68 -0.9881 1.18 2.8394

5x3] 0.9968 0.32 -1.0017 0.17 7.0863

6x6| 0.9991 0.09 -0.99%4 0.0e6 3.5758

13 [3x3] 1.0192 1.92 -1.008s6 0.86 $.15638

4x4{ 0.9928 0.72 -0.9883 1.17 2.1327

5x5| 0.9964 0.36 -0.994s8 0.52 7.369%0

6x6| 0.9987 0.13 -0.9984 0.1le6 £.8721
NRI : Number of Gaussian quadrature points for regular integral
NS I : Number of Gaussian quadrature points for singular integral

Exact soludon : u=1.E-06, t=-1.00

Table 4.7 Beam in Uniform Tension, 6-node Triangular Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time

78



NRI [ NsT | u, (%10 ) | Eror (%) tB Error (%) Eigcgfﬁ

3x3i3x3| 1.0179 1.79 -0.9%9653 3.47 1.9954
44| 1.0170 1.70 -0.9680 3.20 3.1194
S5x5f 1.0170 1.70 -0.9683 3.17 4.55%5
6x6| 1.0169 1.69 -0.9683 3.17 6£.3246

4x413x3f 1.0017 1.70 -0.9955 0.45 2.3013

‘ 44| 1.0012 0.12 -0.9986 0.14 3.4235
5x5{ 1.0012 0.12 -0.9988 0.12 4,8600
gx6| 1.0012 0.12 -0.9989 0.11 6.5606

5x5|3x3] 1.0006 0.12 -0.9973 0.27 2.70%1
4x4} 0.9989 0.01 -1.0004 0.04 3.8227
Sx3| 0.99%6 0.04 -1.0007 0.07 5§.2572
sx6| 0.9996 0.04 -1.0007 0.07 7.0385

6x6(3x3| 0.9983 0.07 -0.9%9960% 0.34 3.2110
4x4| 1.0000 0.00 -0.99%7 0.03 4,3337
5x5| 1.0000 0.00 -1.0000 0.00 S.77¢1
56l 1.0000 0.00 -1.0000 0.00 7.5443

NRI : Number of Gaussian quadrature points for regular integral

NS I : Number of Gaussian quadrature points for singular integral

Exact solution : u=1.E-06, t=-1.00

Table 4.8 Beam in Uniform Tension, 8-node Quadrilateral Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time
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4.2 Beam Subjected to Pure Bending

The problem of a beam in pure bending was solved to investigate the
convergence of each element as a function of number of elements used. The
geometry and boundary conditions are shown in Figure 4.6. For each element,
three different meshes were used as shown in Figures 4.7 to 4.10. The exact

soludon for the displacements are [31]

U, =V?I\I/I Xy
__ M, 2 2
uy = EI(Z Vx+vy2)
u;% vz (4.2)

and the traction at point B in Figure 4.6 is

tz=0 4.3)

where M is the applied moment and I is the moment of inertia with respect to the z
axis. The displacements at point A and the traction in direction z at point B are
compared with these exact solutions. The results are listed in Tables 4.9 to 4.12.

The 3-node triangular element and 4-node quadrilateral element do not converge to
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Figure 4.6 Geometry and Boundary Conditions for Beam in Pure Bending
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(a) No. of Nodes: 18, No. of Elements: 32

f— —— 7]
——

(b) No. of Nodes: 26, No. of Elements: 48

(b) No. of Nodes: 42, No. of Elements: 80

Figure 4.7 3-Node Triangular Element Meshes for Beam in Pure Bending
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(a) No. of Nodes: 18, No. of Elements: 16

/ /

(b) No. of Nodes: 26, No. of Elements: 24

4 / /. /

(b) No. of Nodes: 42, No. of Elements: 40

Figure 4.8 4-Node Quadrilateral Element Meshes for Beam in Pure Bending
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(a) No. of Nodes: 26, No. of Elements:12

(b) No. of Nodes: 42, No. of Elements: 20

(b) No. of Nodes: 74, No. of Elements: 36

Figure 4.9 6-Node Triangular Element Meshes for Beam in Pure Bending
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(a) No. of Nodes: 20, No. of Elements: 6

(b) No. of Nodes: 32, No. of Elements: 10

(b) No. of Nodes: 56, No. of Elements: 18

Figure 4.10 8-Node Quadrilateral Element Meshes for Beam in Pure Bending

87



sy, 1dO pue

‘vortorl], pue siuswdoe|dsi(] 10§ toug jo uosurdwo)): AW [e1AlejLpeny) Spou-g ‘Suipuag un ut weag z1'y QL

z

1 '90-HL9999°T- =20 SO-HL9990'T =N *£0-H00000°T =71 : uonnjos 1exg

001 =
jeadarut aen3uis 105 sjutod oxmuapenb ueissnen) Jo saquiny : [ SN
jes3aiut rendar 10j siuod axmeapeab ueissnen) Jo aquiny : (YN
BECV 6T | 1070 1000° T 10°0 | 6999°¢- | 10°0 | 89901 00°0 0000°T |9%9
c8FL°91 | 20°0 | 2000° 1 10°0 ] 0L99°¢-]1 10°0 | g990"1 00°0 0000°T (gxg
208S° V1] S0°0 | G666°0 20°0 | TL99°C2- ) 2070 | 6990°1 | €0°'0 | L666°0 |vX¥b
G6€£6°CT1192°0 | 9200°1 ZL°0 | PE99°C- | BT 0 | Lp90 T | LZ°0 | €L66°0 |EXE|9%9
6€£CV"91 1 1070 § TOOO'T | TO'0 }6999°¢- | 10°0 | 8990°T [ 10°0 | 6666 0 |9%9 .
9808°€T ] 10°0 1000° 1 T0°0 [0L99°Z2-]1¢20°0 | g990" 1 10°0 6666°0 |SXG
6129°11{60°0 | S666°0 ¢0°0 | TL99°¢- 12070 | 6990°T | v0°0 | 9666 0 [bx¥
CEV6 6 0€°0 0€00° 1 Z1°0 | V€99 ¢~ | BT°0 8Br90° 1 B2°0] CL66°0 JEXEL|GXG] OCLP
1¢S0°v1 | 8L°0 | 226670 BV 0 | 6€G9°C- |1 ¥9°0 | g6G50° 1 21°0 8866 "0 loxg
92LETT | 8L 0 | ¢¢66°0 BV 0 | 6ES9°C- | V970 | 86G0°T | €1°0 | £L866°0 |SXS
vS0Z°6 G8°0 | G166°0 Ly 0 | TPS9°C-1€970 | 66G0°T |91°0 | ¥866°0 |vxp
09TS"L | GG°0 [ S¥66°0 [ T9°0 | S0S9°¢- | €870 | g.G0"1T |6€°0 | 1966°0 |cxXe|pxp
6IC1 ¢l Z1°¢ | ¢1¢0°1 €2°C [ 19¢L°C~ | 18°C | 99601 [6T°T | 6T10°T |9%9
L6SY "6 c1°¢ | €120°1 €2°C | 19¢L°¢- |1 187¢C | 9960° 1 81°1 gi10° 1 |SXg
S0Z€°L 61°C | 6120°1 €C°C | ¢9¢L°C- | C8°C | L960°T |Gi "t | S110°T |uxp
vovr9 "G 9€°¢ [ 9€20°1 L0°C | 1CCL"2- | 6S°C | ¢p60°T | 1670 | 1600 T |exc|exe
18LL°L | €270 | LL66O b1 0 | 0€99°C-] 6170 | 9P90°1 90°0 | ¥666°0 [9x9]9%9
66vv°G | 89°0 | 890071 LO°0 | 6FP99°C- | SO0 | T990°T [ 99°0 | 9900° 1T |gxGg|exG|qCi'y
088S°€ |96 ¢ | 9S€0°T | 26°2 |99vL"2-]|G0°b | 6601°T | €v'T | €V10°T |vxv|vxp
€ebeL ¢ 8T1°0 | 8100°1 001< | ———=—- 001< | -————- 00T< | ———eme gxX9 [9X9| ezl v
0035 ) | (%) z (%) Za|l @) Aol @) X (8y)
uA:“F NdO | toug : 1o113g Ao.c_xv : JOIIF] An.o_xv . 10113} f.c_xv | 1SN TN USIN

88



the exact solution even for the highest order of Gaussian quadrature and for the
finest mesh. These results lead to the conclusion that the linear elements should
not be used for problems in which the order of traction and displacement
distributions are higher than linear. The 6-node triangular element and 8-node
quadrilateral element both converge to the exact solutions either by increasing the
number of Gaussian quadrature points or by refining the mesh. It is also concluded
that the 8-node element is superior to the 6-node eiernent. In order to obtain results
with less than 1% error in both the traction and displacement, the 6-node element
requires at least 17.9984 seconds using the 7 point Gaussian quadrature for the
regular integral and 6X6 for the singular integral on the 42 node mesh but the 8-
node element only needs 7.5160 seconds by choosing 4x4 Gaussian quadrature for

the regular integral and 3x3 for the singular integral on the 56 node mesh.

The multi-domain technique was also applied using the 8-node element.
Two different meshes were tested, as shown in Figure 4.11. The results in Table
4.13 show that the double region mesh can achieve an equivalent accuracy by
consumming less CPU time than that the single domain mesh does. This is because
the system matrices for the two subregions are, in fact, separated and thus for the
same number of nodes the double region mesh needs less calculation than the single

domain mesh.
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(a) Total no. of nodes: 40 ( 20 nodes for each subregion)
Total no. of Elements: 12 (6 elements for each subregion)
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(b) Total no. of nodes: 64 ( 32 nodes for each subregion)
Total no. of Elements: 20 (10 elements for each subregion)

Figure 4.11 8-Node Quadrilateral Element, Two-Subregion Meshes for Beam
in Pure Bending
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4.3 Circular Buried Crack Under Uniform Tension

The stress intensity factor of a circular crack buried in an infinite body
subjected to far field uniform distributed traction is studied in this secton. The

exact solution is [32]

A
1}
9
Q
™

(4.4)

where o is the applied stress and a is the crack radius. For this problem Ky and
Ky are zero since the load is perpendicular to the crack surface. Six different
meshes with either different number of nodes or different boundary conditions were
studied. The overall dimensions of these meshes were chosen large enough to

simulate the infinite medium.

The first mesh is a two-subregion model which describes the whole domain
of the problem. Each subregion consists of 52 elements and 150 nodes in which 88
nodes belong to the interface which bonds the two subregions as shown in Figure
4.12. The crack face which is kept tracton free. Each crack face is formed by
eight 8-node quadrilateral quarter point elements and eight 6-node triangular
elements. Tracton singular elements are placed along the crack front. The uniform
distributed tractons ¢ in direction z are applied on the plane parallel to the interface
plane of one subregion mesh, and the same plane for another subregion is then

fixed in the z-direction with node A fixed in direction x and node B fixed in
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Total number of nodes: 300 (150 for each subregion)
Total number of elements: 104 (52 for each subregion)

Figure 4.12 Element Mesh of Double Region Model for Buried Circular Crack
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Fig.4.13 Average Error in Computed KI by Different L/A for Varied Poisson Ratio
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direction y, as showm in Fig.4.12, to prevent rigid body translation and rotation.
Ingraffea and Mann [33] pointed out that the ratio of the length L of the crack front
element to the crack length a affects the accuracy of the results. Therefore,
convergence for different L/a ratios under varied Poisson’s ratio v was studied first.
Five different ratios of L/a varying from 0.1 to 0.5 were applied for Poisson’s
ratios varying from 0.0 to 0.4. The results are shown in Figure 4.13 revealing that
the absolute error is confined to within 5% when the ratio of L/a is in between 0.26
and 0.34 for Poisson's ratios ranging from 0.1 to 0.4. Thus, the ratio of L/a of the

models used in this paper is chosen to be 0.3.

In the second example the problem is modeled using the coarse double
region mesh shown in Figure 4.14. It consists of 73 nodes and 25 elements. The
ratio of L/a is 0.3. The maximum error in the calculated Ky was found to be

0.23%. The CPU time for this case was 31 seconds.

The third and fourth meshes used are the same as the ones above except that
only half of the subregion is taken into consideration. The nodes belonging to the
interface are now constrained in the z-direction as shown in Figure 4.15 and 4.16 to
simulate the correct symmetric boundary conditions. The calculated Ky is almost
constant along the crack front and the absolute errors were 1.6% and 0.27% for the
mesh of Figure 4.15 and the mesh in Figure 4.16, respectively. The CPU times

were 71 seconds and 20 seconds, respectively.
The fifth mesh is the half cut of the third mesh with an additional cut plane

y=0 which is fixed in the y-direction as shown in Figure 4.17. The 6-node

triangular elements around the crack tip on this cut plane are converted to be traction
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/ Crack Front

Interface

Total number of nodes: 146 (73 for each subregion)
Total number of elements: 50 (25 for each subregion)

Figure 4.14 Element Mesh of Double Region Model for Buried Circular Crack
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(a) "

p N

No. of Nodes: 150
No. of Elements: 52

Crack Front

(b)

Traction Singular
Element

‘Quarter Point
Element

Figure 4.15 (a) Element Mesh for Half Domain of Buried Circular Crack
(b) Dlustration of Elements around Crack
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(a)

No. of Nodes: 73

No. of Elements: 25

Crack Front

(b)

Traction Singular
Element

Quarter Point
Element

Figure 4.16 (a) Element Mesh for Half Domain of Buried Circular Crack
(b) ustraton of Elements around Crack
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Total number of nodes: 202
Total number of elements: 72

Traction Singular
Element

Crack Front

Quarter Point
Element

Figure 4.17 Element Mesh of Quarter Domain for Buried Circular Crack
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Traction Singular
Element
Crack Front

. Quarter Point

\ Element

Total number of nodes: 110
Total number of elements: 40

Figure 4.18 Element Mesh of One-Eighth Domain for Buried Circular Crack
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Mesh
(fig.) 4.12 4.14 4.15 4.16 4.17 4.18
Mesh Double | Double Single Single Single Single
Type Region | Region | Region | Region | Region | Region
No. of
Node 300 146 | 150 73 202 110
po-of 1304 50 52 25 72 40
i 1.14604{1.13101}{1.14647{1.13142{1.15534|1.15659
Emor
(%) 1.6 0.23 1.6 0.27 2.4 2.5
CPU Time
(Second) 131 31 71 20 133 41

Exact soludon : K;=1.128379
where crack radius a=1, applied stress o=1.

Table 4.14 Circular Crack Buried in Infinite Body Under Uniform Tension:
Comparison of Error for K{ and CPU Time for Different Meshes
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singular elements by relocating their middle nodes on the two sides to the quarter
position to capture the inverse square root singularity in stresses. This mesh is
composed of 202 nodes and 72 elements. The differences between the analytic
soludon of Ky and the calculated results ranged from 1.2% to 2.3%. This mesh

uses 133 seconds of CPU dme.

The final mesh models one-eighth of the domain. Three planes, x=0, y=0,
and z=0, are fixed in the x, y, and z direction, respectively, to represent the correct

boundary conditions. The maximum error in Kj is 2.5%.

The results of this section are summarized in Table 4.14. From the table we
also observe that the last two cases which model only part of the whole domain
have the largest error. This is probably due to the asymmetry of the meshes.
Suprisingly, the coarsest mesh (73 nodes) leads to the most accurate result. Since
the K is constant along the crack front and the quadratic element on both side of the
crack front can model the circular shape exactly, an accurate result can still be
obtained by using only a few elements to model the crack. This also counts for the

reason that the coarsest mesh can have such excellent results.
4.4 Circular Buried Crack Inclined at 30 Degrees Under Uniform Tension

This problem is used to ensure the ability of the Boundary Element Method
to calculate stress intensity factors for mixed mode fracture problems. A circular

crack deforms in three modes when the normial of the crack surface is not parallel to

the direction of the applied load. The exact solutions for the stress intensity factors
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Figure 4.19 Circular Crack Buried in Infinite Body Inclined at an Angle Y With
Respect to the Directon of Applied Load
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are [33]

I'
K= %Gsmzl_l

[ = (24 ) (osiny cosy)J—] COs®

Ky = [ o) (Gsm'ycos’Y)J_] sinw (4.5)

where G is the applied stress, a the crack radius, ¥ the angle between the direction of
applied load and the normal of the crack plane, and @ is the angle as is shown in
Figure 4.19. Only a double region mesh can model this problem appropriately
since symmetry no longer exists. The mesh is composed of two parallelepiped
shaped subregions as shown in Figure 4.20. Each subregion is made up of 52
quadratic elements and 150 nodes including 88 nodes belonging to the interface.
Quarter point elements and traction singular elements are used along the crack front
as described in the previous section. The results are shown in Figures 4.21 to 4.23
in which the stress intensity factors are normalized. The calculated KJ are almost
constant along the crack front. The error ranges from 1.17% to'1.19%. The
maximum error for Kpy and Ky are 2.34% and 5.71%, respectively. The total
CPU time is 131 seconds.
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Interface

Crack Front

Total number of nodes: 146 (73 for each subregion)
Total number of elements: 50 (25 for each subregion)

Figure 4.20 Element Mesh of Double Region Model for Buried Circular Crack
Inclined at 30 Degrees

105



KI

1.2

1.1 7

1.0
0.9 '
0.8 1
071
0.6
05
0.4 1
0.3 ‘
0.2 1

0.1

— Exact KI
=== Calculated KI

0.0

45

T v | v 1

50 135 180 225 270 315

@

Figure 4.21 Comparison of Calculated KI with Exact Solution for

Circular Crack Inclined at 30 Degrees
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Figure 4.22 Comparison of Calculated KII with Exact Solution for
Circular Crack Inclined at 30 Degrees
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Figure 4.23 Comparison of Calculated KIII with Exact Solution for
Circular Crack Inclined at 30 Degrees
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4.5 Semi-circular Surface Crack Under Uniform Tracton

The purpose of this section is to check the accuracy of the method for
surface crack problems. Since an exact solution for this problem does not exist, the
results are compared with the work of Tada [33], and Newman and Raju (34].

Tada presents the stress intensity factor K for a semi-circular surface crack in a

semi-infinite body as shown in Figure 4.24 as

K(8) = % o/ma F(8) (4.6)

where

F(8) = 1.211 - 0.186 ¥sinB (10°<08<1707)

and ¢ is the applied stress, a the crack radius, and 8 is the angle measured from the
surface as shown in Figure 4.24. Note that the Ky is not constant along the crack

front. For the same problemNewman and Raju predict

K, = 0/7 (=) F(9) (47

[
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Figure 4.24 Circular Crack in Semi-infinite Body Under Uniform Tension
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where

F(0) = 1.04 [ 1+ 0.1 (1-sin6)2 ]

and Q = 2.464 for a semi-circular surface crack. A double region model, as shown
in Figure 4.25, is used in the problem. Each subregion consists of 72 quadratic

elements and 202 nodes.

The comparison of the results with the work of Tada and Raju and Newman
is shown in Figure 4.26. The present results are quite consistent with these two
predictions when the 8 is between 35" and 90°. The maximum difference appears
at the surface with the error of about 5.7%. This is because the KT is calculated
assuming of plane strain conditions and an inverse square root singularity of
stresses. At the points where the crack intersects the free surface these conditions

do not apply.
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Figure 4.26 Comparison of Stress Intensity Factors for a Circular
Surface Crack in a Semi-infinite Body Under Uniform

Tension
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CHAPTER FIVE

STRESS INTENSITY FACTOR ANALYSIS OF THE INNER
RACEWAY OF HIGH SPEED BEARINGS

In this chapter, the geometry of the engine bearing is described and the
loadings on the inner raceway (including the hoop stresses and the Hertzian contact
load) are calculated. The stress intensity factors for several semi-circular surface
cracks of different lengths and inclinations are presented as functions of the location

of the indenters.

5.1 Geometry and Applied Loading

The bearing analyzed in this report is a high performance engine bearing
which is used on the main shaft of an aircraft. The dimensions and the geometry

of the bearing are shown in Table 5.1 and Fig.5.1, respectively.

The bearing consists of 28 ball rollers. To simulate the passage of each ball
only 1/28th of the inner raceway is modeled. Since the radius of the inner raceway
is large compared to the other dimensions of the part, the curvature is neglected and

the mesh is modeled as a block with flat surface as shown in Fig.5.2.

The external loadings considered in the analysis are the hoop stresses and

the Hertzian load. The hoop stresses due to the rotation and the shrink fit are taken

from [22] and are given by
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Inner radius a _ =2.0 inch
Shaft s
Outer radius bg = 2.30233 inch
Inner radiusa; =2.3 inch
Inner raceway . ',
Outer radius b; = 2.6 inch
Inner radius a , = 3.1 inch
Outer raceway
Outer radius b , = 3.35 inch
Bearing length L 0.57322 inch
Ball bearing Radius R =0.25 inch
No. of ball bearings 28
Shaft speed 25,500 rpm
E =3.0X 10 psi
.3
=(.288 Ib/in
MS0 steel P A
material properities v =03
K= 18ksiVin

Table 5.1 Dimensions and Material Properities of Typical Ball Bearing for
Aircraft Engines
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Outer raceway

Figure 5.1 Geometry of Bearing
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2
b/r) +1
+P_(‘__)___

— (5.1)
2 3+v (bi/ai)2 -1

where o is the angular velocity of the shaft and P is the pressure existing between

the shaft and the inner raceway which is equal to

o BB, (-2 (b &)

a. 2.2 2
i 2a%(b, - a?)

(5.2)

where 8, is the difference between the outer radius of the shaft and the inner radius

of the inner raceway during rotation at speed ®. It can be obtained by

5,=8-A8 (5.3)

where 8 is the original shrink fit at O rpm which is equal to 0.00233 inch in this
case and AS is the difference in the radial displacement between the inner radius of
the inner raceway, uri, and the outer radius of the shaft, u,S, under the rotation at

speed , i.e.,
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A8 =y, - u}
2, wo?b
PCO : 2
= [(3+v)b +(1-v)a ]- [(3+v)b +(1- v)as] (5.4)

Applying the data of Table 5.1 to the above equations results in

- 24.3286
Gag = 1973.61( 3.5986 + £23158)

+ @% x 107 [ 3.6290 - 0.1941(r%) + 9-19&] (psi) (5.5)

where ® is in rpm. The maximum hoop stress of the inner raceway is at the inner
radius. The hoop stresses range from 38 ksi to 44 ksi when the rotation speed is

25,500 rpm.

The contact region between a sphere and a flat surface is circular and the

stress distribution is [30]

[ ]
[ ]

= 1-xX. Y (5.6)

where a is the radius of the contact area and p,, is the maximum stress which can be
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calculated from

P
T
(5.7)
na2

oW

Po =

where Py is the total load. The radius is

3P.R (1 -v3)
_3 T
a= — > (5.8)

where R is the radius of the sphere. As discussed in [6] the experimental data
indicates that for the bearing considered in the present analysis the maximum

Hertzian stress is 285 ksi. Subsequent calculations will be based on this value.

The distribution of the Hertzian contact loading is distorted when the
spherical body is rolling over a surface containing a surface breaking crack [31].
However, the influence of the subsurface crack on the Hertzian stress distribution
has been shown [31] to be insignificant. The interaction effects of the subsurface

crack on the Hertzian distribution are thus ignored.

Since the Hertzian stress fields can be solved in closed form, superposition

is applied in order to decrease the number of nodes needed to model the Hertzian
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contact load accurately. The superposition method is illustrated in Fig.5.3. The
stress intensity factors of a surface crack subjected to the Hertzian load are equal to
the stress intensity factors of the same crack loaded with the negative of the stresses
produced by the Hertzian loading. The stresses produced in the interior of the plate
by the hertzian contact loading are calculated by integrating the stresses due to a
concentrated force acting on the boundary of a semi-infinite solid [22] as shown 1n
Fig.5.4. The hoop stresses are directly applied on the the end of the plate. The
total stress intensity factor is then the superposition of the stress intensity factor due
to the hoop stresses and the one resulting from the Hertzian load. It should be
noted that the depth of the plate is assumed to be large enough so that the

distribution of loading remains Hertzian.

5.2 Stress Intensity Factor of Circular Subsurface Crack in the Inner Raceway of

the Engine Bearing

This section presents the results of a quasi-static stress intensity factor
analysis of a typical ball bearing which is used as a support for the main shaft of
aircraft engines. All the calculations are based on the model shown in Fig.5.2
which consists of an axial hoop stress and a Hertzian load ( contact radius a and
maximum intensity p, ) interacting with a semi-circular crack (radius, or length 1)
inclined at an angle ¢. The dynamic effect is ignored and the distance x, between
the center of the Hertzian distribution and the crack mouth is changed incrementally

to simulate the passage of each ball bearing.

The stress intensity factors for this problem vary with position along the
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( a Hertzian load with

v (a) Original problem
a crack)

! (b) Hertzian load applied
I on a body without
crack

< (c) Negative stress applied
~—— on the crack surfaces
——

K(a) : K(c) (K(b)= 0)

Figure 5.3 Ilustration of Superposition Method
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Figure 5.4 Concentrated Force acting on the Boundary of a Semi-infinite Body
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crack front (8 ). A typical variation of the mode I stress intensity factor at 6 = 90°
with roller position and crack length for a vertical crack ( ¢ = 0°) is shown in
Fig.5.5 for p, = 285 ksi ( a = 0.00679 inch ). When the roller is at a distance
greater than four times the contact length from the crack mouth, the stress intensity
factor is a constant which results from the axial stress. As the roller gets closer, the
compressive stress arising from the Hertzian load decrease the K stress intensity
factor. When the load is on the crack mouth the stress intensity factors becomes
negative for the cracks which are shorter than 0.005 inch. The negative value of K
indicates the closure of the crack. For longer cracks, the decrease of K] diminishes

since the crack tip is beyond the range of the highly compressive Hertzian stress

field.

The variation of the mode II stress intensity factor for the same loading
condition is shown in Fig.5.6. The value of KJy is zero when the roller is far from
the crack mouth. As the roller approaches the crack, K] starts to increase and
reaches a maximum value when the load reaches the crack mouth. As the roller
crosses to the other side of the crack, Kyj abruptly changes sign and decreases to a
minimum value equal in magnitude to the previous maximum. For small cracks this
change is very abrupt, but for large cracks the change is more gradually. As
pointed out in [6], these abrupt variations in Kj and K|1 may significantly affect the

propagation of short cracks.

The stress intensity factors for 8 = 45° are shown in Fig.57t05.9. Itis
observed that the variations of K| and Kyy did not differ significantly from 8 = 90°.
Another stress intensity factor Kyjy is observed based on the local coordinate

system moving along the crack front. The Ky behaves as Kj1. Fig.5.10t0 5.12
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1= 0.02Inch
1= 0.04 Inch

Figure 5.5 Variation of KI at 6 = 90° as a Function of Roller

Position with Different Crack Length
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Figure 5.6 Variation of KII at § = 90° as a Function of Roller
Position with Different Crack Length
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Different Crack Length
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Figure 5.8 Variation of KII at §=45" as a Function of Roller Position with

Different Crack Length

128



KIII (ksiVin )

2

¢=0° —g— = 0.005Inch

-1
——e— 1=001Inch

——gp—— | = 0.02 Inch

—o— 1= 0.04 Inch

-10 -8 -6 -4 -2 0 2 4 6 8 10
Roller positon (x/a)

variation of KIII at 6 = 45o as a Function of Roller

Figure 5.9
Position with Different Crack Length

129



show the stress intensity factors for different locations along the crack front. It can

be seen from Fig.5.10 that the magnitude of Ky does not change significantly. The
magnitudes of Ky and Ky change along the crack front but however it can be
calculated from Fig.5.11 and 5.12 that the square root of the sum of the squares of
K[ and Ky are almost constant along the crack front. A comparison of the results
for ¢ = 0° obtained in the presented analysis with those presented in Mendelson and
Ghosn [6] revealed that the magnitudes and vax‘iaﬁons in Ky are similar. However,
the mode II stress intensity factors differ significantly. As seen in Fig.5.5, forl =
0.02 inch the maximum value of Ky is approximately 1.5 ksi Vin, while in

reference [6] it is approximately 10 ksiVin.

Fig.5.13 and 5.14 present the stress intensity factors of K1 and Kjj at
8=90° , respectively, for cracks inclined at ¢ = 30° for Po = 285 ksi. An increase of
K] is observed when the roller passes to the right hand side of the crack mouth for
short cracks. This is because the Hertzian load causes the inclined crack surfaces
apart when it is passing over the crack mouth. The value of K1y before the roller
crossing over the crack from the left is much greater than the Ky after the roller
moving to the right of the crack mouth since the Hertzian load is pushing the left
crack surface sliding along the right crack surface when the roller is on the right

hand side of the crack.

Fig.5.15 and 5.16 show K| and K|y variations for several inclinations of a
crack length 1 = 0.02 inch. High values of K| is observed for ¢ = 15° and ¢ = 30°.
The mode I fracture toughness of M50 steel, which is used for this type of bearing,
is of the order of 18 ksiVin. Assuming the mode II toughness is of comparable

magnitude, these results indicate that this applied loading would lead to large
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propagation rates for cracks inclined at 30°.
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CHAPTER SIX
CONCLUSIONS

A preliminary stress intensity factor analysis of a typical high speed bearing
was conducted using the Boundary Element Method. The results obtained in the
present three-dimensional analysis suggest lower mode Ky stress intensity factors
than those predicted by the two-dimensional analysis in [6]. This is due to the fact
that the total load needed to produce the experimentally measured 285 ksi Hertzian
stress using a semi-spherical contact area is much lower than that using a cylindrical
contact (27.5 Ibs instead of 1500 1bs ). This may be the reason why the predictions
of Mendelson and Ghosns' [6] analyses are overly conservative. High K and Ky
values were observed for cracks inclined at 30°. These results indicate that the
interaction of the Hertzian load would lead to large propagation rates for cracks

inclined at 30°.

Although the stress intensity factor data obtained from the analysis has not
been reduced to a form suitable for life prediction, these preliminary results can
provide a better understanding of the complex interactions between a surface crack,

a moving Hertzian load, and an axial stress.

As for the further work, an incremental crack growth analysis of elliptical
cracks using the Boundary Element Method and a fatigue crack growth law would
be the next step. Also, more factors which affect the stress intensity factors of a
crack such as friction between the roller and the raceway, the dynamic effect, etc.

could be taken into consideration.
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APPENDIX A
SHAPE FUNCTIONS FOR ISOPARAMETRIC ELEMENTS

The shape functions for different elements are listed below corresponding to

the elements shown in Fig.A.l.

(1) 3-Node Linear Triangular Element:

Ny =§;
Ny =&
N3=&3

where &1+ Ep+ &3 =1

(2) 6-Node Quadratic Triangular Element:

Ny=§1(28§-1)
Ny=87 (28— 1)
N3=E&3(283—1)
Ny=4818)
N5 =48783
Ng = 4838

where §1+ &)+ §3=1
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(3) 4-Node Linear Quadrilateral Element:

Np=(1-§)(1-&)/4
N2=(1+§1)(1—§2)/4
N3=(1+§1)(1+§2)/4
Na=(1- E)(1+Ey) /4

(4) 8-Node Quadratic Quadrilateral Element:

Ny =-(1+51+5)0(1-§)(1-&y) /4
Ny =-(14§1-E)( 1+ & D1 - &5 ) / 4
N3 =145 +E( 1 +&)(1 + &) / 4
Ng=-(1+81-E)(1- §)(1+&y) /4
Ns=(1-£2)(1-&5)/2
Ng=(1+E)(1-Ey2)/2
Ny=(1-82)(1+&5)/2
Ng=(1-&)(1-§2)/2
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Figure A.1 Isoparametric Elements
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APPENDIX B
TRANSFORMATION FUNCTIONS

The integral on a boundary surface element with domain I can be expressed

as

I= JK(x,y)dxdy
r

In order to overcome the 1/r singularity of the kernel the integral is first transformed
from the Cartesian coordinate system to the parametric &-coordinate system by

using the shape functions

x= ) NE X,
i=1

y=D NE.E)Y,
i=l1

corresponding with the Jacobian
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9% ox
o€, ’ 9,
J 1 (él ,&2) =
9 9y
%k, %
such that the integral becomes

1= [ &1 €, 6080,

Ty

The integral on the isoparametric element is then divided into several triangles
according to the location of the singular node. The singular integral on each triangle

is carried out by using a polar coordinate system with its origin at the singular node

such that
él = fl(r:e)
g'z = gi(r’e)
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% %
 SPY)
1,r,0) =
&, &,
or ' 98
and
n.r

1= Y [ @8, (01, (x)arde
i=1 T,

1=1

where nr is the total number of triangles in which the isoparametric element is
divided and T; is the corresponding domain. The Jacobian J5 =r can remove the
1/r singularity. In order to accomplish the integral numerically by the Gaussian
quadrature the polar coordinate is again transfered to a system with both coordinates

ranging from -1 to 1 by the transforming functions

r=h(r,9)
9=1i(I,9)
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x
o ’ 98
I =
C e e
or ' 020
The integral then becomes

Tl.r
1= Y, [ k@Ol COLEOI 0 )dd0
T.

i=1
i

Y wiwdi,0'Y, (07,007 1,8 ") drdg

where n, and ny, are the order of the Gaussian quadrature. The transforming

functions for different element are illustrated in the following pages.
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